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Project overview

* Collaboration between UCSC / IBM Almaden
e UCSC: Scott Brandt, Carlos Maltzahn
* |IBM: Richard Golding, Theodore Wong
* 3 years/ $1,000,000
* Goal: Improve end-to-end performance
management in large clustered storage
* From client, through server, to disk
* Manage performance
* Isolate traffic

* Provide high performance
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System architecture

* Applications request
reservation from broker

 Specify workload: throughput,
read/write ratio, burstiness, etc.

* Broker does admission control

* Requirements are translated to
utilization

» Uetilizations are summed to see
if they are feasible

* Once admitted, I/O streams are
guaranteed (subject to workload
adherence)

* Disk, cache, network
controllers maintain
guarantees
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Fahrrad: Efficient QoS-aware Disk Scheduling

* Control of application resource reservation
and usage at the disk level

* Goals:
* Mixed hard, soft, and non-real-time workloads
* Arbitrary granularity of reservations
* Complete isolation of workloads

* Excellent I/O performance




Key observation

 Scheduling consists of two
distinct questions

Resource allocation: How
much resources to allocate to
each process

Dispatching: When to give
each process the resources it
has been allocated

* Most schedulers integrate
their management

 Separating them is powerful!
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RBED RAD-based CPU scheduler
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Utilization-based disk reservations

* Throughput reservations
 Assume worst-case behavior

* Allows reservation of a tiny fraction of actual
throughput

* Utilization reservations
* Easy to make, account for; and guarantee
* Embed application workload information
* Avoid the need for worst-case assumptions

* Workload knowledge + utilization reservation
+ isolation = throughput guarantee




Applying RAD to disk I/0O

 Reservations based on disk time utilization
 Rate = utilization

 Deadlines = times at which actual utilization must
equal reserved utilization (= latency bound)

* Need to be able to reorder requests for
performance

* All requests that can be handled without
jeopardizing deadlines are put into a reordering
set

* Cannot ignore “context switches” (seeks)




Fahrrad: RAD-based /O scheduling

| . Utilization-based reservation, with deadlines

* e.g., 50% of the disk every second, 10% every hour, etc.

2. Requests put into queues

* Each queue has a rate and deadlines

3. Micro-deadlines assigned to requests based on
target rate and worst-case assumptions

4. Requests released to Disk Scheduling Set (DSS)
based on micro-deadline

5. Requests scheduled for service from DSS

6. Micro-deadlines updated based on actual service
times




Fahrrad architecture
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Guaranteeing deadlines

Mdeadlines assigned to each request: di = di.; + WCET / U
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Release to DSS

Requests with p-deadline up to horizon (earliest deadline) move to DSS
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Guaranteeing utilization

Guarantee reserved utilization by shifting p-deadlines
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A few details

* DSS scheduling
 C-SCAN,SPTF, EDF

* Managing burstiness

* Slots—reserve utilization until request arrives

* Unused slots are allocated to other streams

* Slot swapping—aggregate requests in DSS by swapping slots
* Increases sequentiality of DSS

* Increases isolation and performance

* Isolation—accounting for overheads
* Each stream charged for its seeks

* Each streams charged 2 seeks per deadline




Received disk time [ms]

Fahrrad works
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Received utilization [ %]
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Received utilization [ %]
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Throughput [IOs per sec]

Performance vs. Linux
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Disk scheduling conclusions

* Fahrrad provides

* Integrated hard real-time, soft real-time, and best-
effort service

* Arbitrary (nearly) reservation granularity
* Excellent isolation between processes

* Excellent performance




Server cache management

* Server caching isolates disk from application
behavior

* Buffering smooths workload
* Isolates disk from application period
* Disk deadlines are buffer full times
* Translates between time to space (and back)

* Aside: best-case for disk = worst-cast for cache




Server cache management

 Reads and writes are
handled differently
 Read cases
| . Cache hit; creates slack
2. Cache miss: sent to disk

3. Prefetch: uses slack to
increase efficiency

* NV cache=writes can be

delayed indefinitely

* In general: need at least 3 l
periods of server cache




Network management

* Moving data from client cache to server cache

* Network QoS is well-explored

* Currently examining existing solutions

* Cases
|. One client/server route: O(1)

2. One client/server route with arbitrary application
placement: O(n)

3. Many client/server routes
* w/trunking: polynomial with linear programming: O(n)?

* w/out trunking: NP-complete!?




Client cache management

* Holds application data for transfer to server

* Further isolates application from disk
* Further reduces burstiness

* Further addresses independence of periods

 Coordinates with network and server cache




Spinoff: virtual disks

* Virtual disks—complete isolation of disk
functionality

* Capacity isolation
* Temporal isolation

* Performance isolation
* LUNs provide capacity isolation

* Fahrrad provides temporal and performance
isolation




Conclusions

* Excellent progress (< | year along)

* Disk scheduling: Fahrrad

* Server cache: In progress

* Networking: Preliminary investigation
* Client cache:TBD

* Lots of industry interest: IBM, NetApp,VMware,
SAP, NICTA/OK Labs, ...

* Pursuing DARPA follow-on building on end-to-
end QoS




